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 Abstract.- Aphanius fasciatus is a cyprinodont distributed in the salty coastal water of the central and eastern 
Mediterranean Sea and occasionally in internal fresh water. In this study, we investigated the genetic structure of three 
populations of the killifish A. fasciatus captured from Tunisian coast. The genetic diversity of mitochondrial NADH-
dehydrogenase subunit 1 (965pb) was addressed on 17 specimens of three populations of Aphanius. fasciatus.. 
Phylogenetic analyses (Maximum likelihood (ML) and neighbour-joining (NJ)) were fully congruent and 
demonstrated the occurrence of two main groups or clades. The first clade comprises coastal populations (Luza and 
Sfax sites) while the second includes a population from estuary (Oued Hamdoun site). The analysis of molecular 
variance (AMOVA) showed that the percentage of variation among groups is considerably higher (72.8%) than within 
populations (34.32%). The overall Fst value (0.65; p=0.01) supports an extensive genetic structure of the two clades. 
These data represent an attempt towards the geographic diversification of A. fasciatus and provide new insights for the 
knowledge of genetic structural patterns and the evolutionary processes occurring in these species.  
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INTRODUCTION 
 

 Differences in the levels of genetic 
substructuring in marine, anadromous and 
freshwater teleosts have been frequently 
documented (Gyllensten, 1985; Ward et al., 1994). 
Generally marine species have the potential for 
long-distance dispersal of eggs, larvae, juveniles and 
adults, resulting in genetic connection between 
populations over large distances. Conversely, some 
characteristics of species living in disjunct habitats, 
such as fresh or brackish water sites and the nature 
of the habitats occupied produce a higher likelihood 
of evolutionary divergence among populations 
(Carvalho, 1993): benthic eggs, absence of larvae, 
low mobility of adults, presence of geographical and 
ecological barriers and habitats fragmentation 
respectively. 
 Aphanius fasciatus (Valenciennes, 1821) is a 
Mediterranean endemic cyprinodont fish, occurring 
in coastal brackish water habitats (Leonardos and 
Sinis, 1999), and inhabited a wide range of lowland 
waters but its distribution is reduced to brackish and 
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hypersaline waters in salt marshes and coastal 
lagoons. Previous studies showed, a dramatically 
decline of A. fasciatus population, in many cases 
even to extinction due to problems of brackish-
water habitat degradation,  introduction of exotic 
fishes and pollution of continental and coastal 
waters (Bianco, 1995). In addition, it is a widely 
distributed coastal species in the Mediterranean 
area. It has a relatively sedentary life history with 
large demersal eggs and without larval dispersal 
stages and the individual populations show strong 
territoriality (Triantafyllidis et al., 2007). 
For the Mediterranean populations of A. fasciatus, 
numerous studies have documented a high degree of 
isolation among them, marked genetic structuring 
using allozyme (Maltagliati, 1998a,b, 2002; 
Maltagliati et al., 2003a) and mitochondrial DNA 
sequences (Tigano et al., 2004, 2006; Triantafyllidis 
et al., 2007). Thus, the overall genetic diversity of 
the species is almost completely determined by the, 
among-population rather than within-population 
genetic variability (Maltagliati, 1998a,b, 1999). 
Additionally, morphological differentiation among 
A. fasciatus populations has been detected 
particularly from Sicily, Sardinia and the Adriatic 
Sea (Kiener and Schachter, 1974; Parenti and 
Tigano, 1993; Maltagliati, 1998a, 1999; Cimmaruta 
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et al., 2003; Tigano et al., 2004, 2006; Ferrito et al., 
2007).   
 The NADH-dehydrogenase subunit 1 was a 
valuable molecular marker for evolutionary 
relationship reconstructions among populations of 
fish species (Palumbi, 1996). The mitochondrial 
DNA presents a good marker to investigate genetic 
differentiation, among inter or intra-specific 
investigation, in fish species. In this study, we 
investigated the patterns of genetic structure 
between three populations of the killifish A. 
fasciatus captured from Tunisian environment: one 
population from an estuary (Oued Hamdoun) and 
two others from the littoral coast (Luza and Sfax 
population) using mitochondrial NADH-
dehydrogenase subunit 1 (ND1, partial Cds) gene. 
For this purpose, we analyzed for the first time the 
complete sequence of Aphanius fasciatus 
mitochondrial NADH-dehydrogenase subunit 1 
(ND1, partial Cds) gene from specimens collected 
from Tunisian area. 
 

MATERIALS AND METHODS 
 
Sampling  
 A total of 17 specimens of A. fasciatus were 
collected from three localities in Tunisian coast (6 
samples from Luza, 6 from Oued Hamdoun and 5 
from Sfax). All specimens were captured in coastal 
waters (0.5-1 m depth) by hand nets during June 
2010 along the south eastern coast of Tunisia 
(Fig.1). The coastal sites Luza (L) and Sfax (S) were 
selected based on preliminary studies that showed 
the presence of large population of A. fasciatus 
(Kessabi et al., 2009; Messaoudi et al., 2009). Luza 
is located approximately 50 km north of Sfax.  The 
third site was Oued Hamdoun (H). It is an estuary 
and called locally Dkhila coast. It is located in the 
southern coastal zone of “Sousse” and represents the 
unique freshwater source feeding this coast. Oued 
Hamdoun is located approximately more than 150 
km north Luza and Sfax sites.  
 

Mitochondrial DNA sequencing 
  Total DNA was extracted from muscle tissue 
preserved in ethanol, using a “Wizard Genomic 
DNA extraction kit” (Promega). NADH1 gene was 

amplified from total DNA extracts using newly 
defined primers, respectively designed on the basis 
of the NADH-dehydrogenase subunit 1(ND1) of 
Aphanius fasciatus (GenBank Accession no. 
EF640854) (AFND1 Forward: 5'-TGA TTT TAG 
TAC TTT ATG CAA TTA TTA-3') and (AFND1 
Reverse: 5'-GTG GGG GGG CAA GCC AGA-3'). 
The PCR was performed in a total volume of 50 µl 
containing: 20 ng DNA, 2.5 mM dNTPs, Buffer Taq 
(1X), 50 mM MgCl2, 25 pmol from each primer and 
0.5 U of Taq DNA polymerase (Promega).The 
amplification conditions were as follows (35 
cycles): 94°C, 3 min; 56°C, 1 min; 72°C, 1 min, and 
a final extension step 10 min at 72°C.  PCR 
products were visualized following electrophoresis 
on an agarose gel 1% and staining with ethidium 
bromide. 
 

Tunisia 

Mediterranean Sea 

Gulf of Gabes

N

* (S)
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*    (H)    *

 
 

 Fig. 1. Geographic overview of the 
studied sites of of A. fasciatus populations. L 
and S: represents coastal sites while H is an 
estuary. 

 
 Amplified DNA segments encoding NADH1 
genes were purified using the “Wizard PCR preps 
DNA purification kit” according to the 
manufacturer’s instructions (Promega) and then 
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sequenced. Cycle sequencing was performed by 
Macrogen (Seoul, Korea) using Automated Applied 
Biosystems (AB) sequencing and the Taq Dye 
Deoxy Terminator cycle sequencing kit.  
 

Phylogenetic analysis 
 Sequence alignments were performed using 
BioEdit Sequence Alignment Editor (v. 7.0.5.2, 
Hall, 1999). Neither insertion nor deletion was 
observed in the dataset. The published sequence of 
NADH-dehydrogenase subunit 1(ND1) of A. 
fasciatus (GenAcession no. AF449313, 
Triantafyllidis et al., 2007) was used as an outgroup 
for phylogenetic analyses. JModelTest (Posada, 
2008) was run to determine the most suitable model 
for DNA evolution through five model selection 
strategies available in the program. Neighbour 
Joining (NJ) and Maximum-likelihood (ML) 
analyses were performed using, respectively, 
SEAVIEW (Gouy et al., 2010) and PHYML on line 
at the ATGC Montpellier bioinformatics platform 
(v3.0, Guindon and Gascuel, 2003).  
 The genetic variation within groups was then 
estimated using basic statistics. Haplotype (h), 
nucleotide (π in percentage) diversities and their 
standard deviations (± SD) were estimated using 
DNASP (v4.10.9, Rozas et al., 2003). The MEGA 
software version 3.1 (Kumar et al., 2004) was used 
to estimate genetic distances (Tamura and Nei, 
1993). Finally, FST values were calculated and a 
spatial analysis of molecular variance (AMOVA) 
was used as implemented in ARLEQUIN (version 3, 
Excoffier et al., 2006). Variance components of the 
different hierarchical levels were tested statistically 
by nonparametric randomization tests using 10.000 
permutations. A median-joining network was 
reconstructed using NETWORK 4.5.1.0 (Bandelt et 
al., 1999) according to previous published 
sequences of NADH-dehydrogenase subunit 1 of   
A. fasciatus (Triantafyllidis et al., 2007). Variable 
sites were differentially weighted reciprocally 
according to their site-specific mutation rate in the 
total network. Rooting of the network was done 
according to previously published NADH-
dehydrogenase subunit 1 A. fasciatus sequences 
originating from Turkey, Greece, Spain, Italy and 
French (Triantafyllidis et al., 2007). 

RESULTS 
 
 A total of 17 DNA sequences (965 bp) were 
obtained through the amplification of the NADH1 
gene of A. fasciatus (Genbank accession numbers: 
JX273498 to JX273514). Among them, 9 different 
haplotypes were identified. In total, fourteen sites 
were variable and six were parsimony informative. 
The TrN+G model with a gamma distribution shape 
parameter equal to 0.011 and the proportion of 
invariable sites equal to 0.242 was the best 
evolutionary model. The nucleotides frequencies 
were 24.75%, 26.7%, 15.26% and 33.29 % for A, C, 
G and T, respectively.  
 Phylogenetic analyses for the NADH1 gene 
were fully congruent and evidenced the occurrence 
of two diverged genetic clades (I and II). Fig. 2 
represents the phylogenetic tree corresponding to 
the ML analysis. A. fasciatus sequences were 
distributed among two main clades. Clade I 
comprised populations of Luza and Sfax while 
Clade II included the population of Oued Hamdoun 
with a very little overlapping (specimen number 17 
from Luza; see Table I). Phylogenetic analysis for 
Clade I showed that haplotype 1 was the most 
common, including 7 specimens (3 from Luza, 3 
from Sfax and one from Oued Hamdoun), and 
originated from Sfax and Luza locality. For Clade 
II, the haplotype 5 was represented by 3 specimens 
from Oued Hamdoun (Table I). These two clades 
were separated by a moderate value of Tamura and 
Nei genetic divergence (clade I vs. II: 0.6±0.002%). 
The mean FST value between Clades I and II was 
0.65 (p = 0.001). AMOVA results showed a genetic 
structuring mainly supported among the two groups 
(72.8%). Most of the variation was explained by 
differences among groups (72.8%; p = 0.0003) 
whereas variation within populations was smaller 
(34.32%). Phylogenetic analysis for the NADH1 
gene was fully congruent and showed the 
occurrence of two diverged genetic clades (I and II). 
In the Mediterranean context, our data were aligned 
with 72 haplotypes (507 bp) of mtDNA NADH-
dehydrogenase subunit 1 of A. fasciatus, published 
by Triantafyllidis et al. (2007). A median-joining 
network demonstrates the occurrence of two distinct 
groups (Fig. 3). The first one contains the 
populations  originating from French, Spain Greece,  
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 Fig. 2. Maximum likelihood phylogenetic relationships among NADH1 deshydrogenase sequences of 17 
specimens of A. fasciatus. Numbers aside nodes indicate bootstrap values (% > 50) obtained by the NJ and ML 
analysis respectively. 

 
 
Table I.- Geographical locations, sample abbreviations and haplotypes of A. fasciatus used in this study. 
 
Sample code Locality  Latitude  Longitude  Haplotype Halogroup 
      
1 Luza 35°02'63''0 11°01'35''06 H1 I 
2 Luza 35°02'63''0 11°01'35''06 H1 I 
3 Sfax 34°38'08''16 10°39'08''64 H1 I 
4 Sfax 34°38'08''16 10°39'08''64 H1 I 
5 Sfax 34°38'08''16 10°39'08''64 H2 I 
6 Sfax 34°38'08''16 10°39'08''64 H3 I 
7 Sfax 34°38'08''16 10°39'08''64 H1 I 
8 Oued Hamdoun 35°47'20''02 10°41'00''09 H4 II 
9 Oued Hamdoun 35°47'20''02 10°41'00''09 H5 II 
10 Oued Hamdoun 35°47'20''02 10°41'00''09 H5 II 
11 Oued  Hamdoun 35°47'20''02 10°41'00''09 H5 II 
12 Oued  Hamdoun 35°47'20''02 10°41'00''09 H6 II 
13 Oued Hamdoun 35°47'20''02 10°41'00''09 H1 I 
14 Luza 35°02'63''0 11°01'35''06 H1 I 
15 Luza 35°02'63''0 11°01'35''06 H7 I 
16 Luza 35°02'63''0 11°01'35''06 H8 I 
17 Luza 35°02'63''0 11°01'35''06 H9 II 
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 Fig. 3. Median-joining network of mtDNA (NADH-dehydrogenase subunit 1) haplotypes among A. fasciatus 
sequenced in the present study and included sequences published by Triantafyllidis et al. (2007). Numbers of 
mutations (greater than one) between haplotypes are indicated near branches and circle sizes are proportional to the 
number of similar haplotypes (n) observed in the data set. 

 

Italy and Turkey while the second comprised the 
Tunisian populations. These two groups were 
differentiated by 46 mutational steps (Fig. 3). 
 

DISCUSSION 
 
 The aim of the present study was to 
investigate the degree of genetic divergence 
between natural populations of A. fasiatus captured 
from Tunisian coastal and estuary areas. Our results 
revealed relatively low levels of genetic 

polymorphism across Tunisian populations of A. 
fasciatus species and provide clear evidence for the 
presence of two differentiated clades.  
 Indeed, the presence of diagnostic haplotypes 
(H1 and H5) and the high degree of genetic 
divergence found between the two clades suspect a 
break of gene flow and suggest that they have 
subsequently evolved independently. Moreover, 
these two clades were differentiated by a moderate 
sequence divergence (0.6%). Our results are in 
agreement with numerous studies on Italian A. 
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fasciatus populations which indicate morphologic 
(Tigano and Ferrito, 1985; Tigano and Parenti, 
1988; Tigano, 1991; Parenti and Tigano, 1993; 
Tigano et al., 1999) and genetic differentiation 
(Maltagliati, 1998a,b, 1999; Cimmaruta et al., 2003; 
Maltagliati et al., 2003b). Maltagliati (1999) suggest 
that the observation of low levels within-population 
genetic variability has been considered as a general 
characteristic of these species. 
 In our study the mean FST value between the 
two clades was 0.65. This value rather falls within 
the range of those recovered from intra-specific 
genetic studies for Aphanius species (range 0.00-
6.86%, Tigano et al., 2004, 2006; Triantafyllidis et 
al., 2007). The differentiation, obtained in the 
present work, was lower with that recorded in A. 
fasciatus populations using molecular tools (0.84) 
(Triantafyllidis et al., 2007). In this case, higher FST 
values (>0.45) have been reported in populations of 
various species of brackish and fresh-water 
cyprinodontids (Ashbaugh et al., 1994; Dunham and 
Minckley, 1998). However, previous studies of A. 
fasciatus populations, based on allozymic analysis, 
have shown high genetic differentiation among 
populations with values ranging from 0.302 to 0.507 
(Maltagliati, 1998b, 1999). On the other hand, the 
molecular analysis carried out by Hrbek and Meyer 
(2003) showed a limited structuring of A. fasciatus 
populations. Numerous unique haplotypes and 
significant population structuring was found after 
analysis of D-loop region in central Mediterranean 
A. fasciatus populations by Tigano et al. (2006).  
Such low genetic variation has also been found in 
previous studies in A. iberus (Doadrio et al., 1996) 
and A. fasciatus populations (Maltagliati, 1998a,b, 
1999).  
 The genetic substructuring of Tunisian A. 
fasciatus populations can be explained by the 
biological characteristics of this species. Indeed, 
adaptation processes have evolved in response to 
selection for restricted dispersal populations. Thus 
the likelihood of reproductive isolation of 
populations is increased and their genetic 
differentiation likely (Waples, 1987). Additionally, 
life-history traits of A. fasciatus, such as benthic 
eggs, absence of larval stages and habitat 
preferences, determine a low potential for dispersal, 
which is consistent with the observed high degree of 

genetic differentiation among its populations. In 
addition, the high genetic divergence between 
coastal and estuary populations reported in our 
study has been described for numerous fish species. 
A characteristically low level of polymorphism has 
also reported in many typical brackish water 
invertebrate species (Battaglia et al., 1978; Abbiati 
and Maltagliati, 1996).  
 In this context, the extreme environmental 
variability of coastal lagoons suggests that physical 
and ecological factors could contribute to the 
genetic divergence among populations occurring in 
coastal and estuary populations. Additionally, 
coastal lagoons are habitats exposed to wide 
environmental variations, particularly as regards 
salinity and temperature, which may cause strong 
selective pressures on organisms. These 
characteristics suggest that environmental factors 
directly modify the genetic patterns of fish species 
(Gonzalez-Wanguemert et al., 2006, 2009) and 
could contribute to the genetic divergence among 
populations, associated with physical and ecological 
discontinuities between coastal and estuarines 
populations (Bilton and Bishop, 2002; Iannotta et 
al., 2008). The natural fragmentation of the 
brackish-water habitats contributed to the disjunct 
coastal distribution of A. fasciatus.  In fact, 
brackish-water habitats are characterized by rapid 
and wide changes of both physicochemical and 
biological features due to natural events, as well as 
human induced alterations (Cognetti, 1994). The 
genetic structure of A. fasciatus, results from the 
interaction of life history traits and natural 
fragmentation of habitats, which determine the 
observed isolation of local populations. In addition, 
it is known that environmental factors may play a 
decisive role in intra-specific differentiation. It is 
becoming increasingly recognized that estuarine 
fauna possess patterns of genetic variation that 
reflect complex population histories (Bilton and 
Bishop, 2002). Consequently, much remains to be 
discovered about how the distribution of genetic 
diversity in these systems is related to the ecology 
of estuarine organisms. Nevertheless, taking 
together, these data can provide a valid knowledge 
base for the understanding of the micro-evolutionary 
processes, associated to habitat fragmentation acting 
in A. fasciatus populations.  
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